| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 |
- # evaluationgap.py — Sweep x-axis over "gap", y-axis = accuracy (mean ± 95% CI)
- # Random fidelity generator version where alpha - beta = gap.
- import os
- import json
- import time
- import pickle
- import hashlib
- import shutil
- import numpy as np
- import matplotlib as mpl
- import matplotlib.pyplot as plt
- from cycler import cycler
- from network import QuantumNetwork
- from schedulers import run_scheduler
- from viz.plots import mean_ci95
- # ---- Matplotlib global style (match evaluation.py) ----
- mpl.rcParams["figure.constrained_layout.use"] = True
- mpl.rcParams["savefig.bbox"] = "tight"
- mpl.rcParams["font.family"] = "serif"
- mpl.rcParams["font.serif"] = [
- "TeX Gyre Termes",
- "Nimbus Roman",
- "Liberation Serif",
- "DejaVu Serif",
- ]
- mpl.rcParams["font.size"] = 20
- default_cycler = (
- cycler(color=["#4daf4a", "#377eb8", "#e41a1c", "#984ea3", "#ff7f00", "#a65628"])
- + cycler(marker=["s", "v", "o", "x", "*", "+"])
- + cycler(linestyle=[":", "--", "-", "-.", "--", ":"])
- )
- plt.rc("axes", prop_cycle=default_cycler)
- # -----------------------------
- # Random fidelity generators (alpha - beta = gap)
- # -----------------------------
- def _generate_fidelity_list_random_rng(rng, path_num, alpha=0.95, beta=0.85, variance=0.1):
- """
- Generate `path_num` fidelities with top-1 mean alpha and others mean beta,
- each sampled from Normal(mu, variance), clamped to [0.8, 1.0].
- Ensures a visible top-1 gap (>0.02) in the sorted list.
- """
- while True:
- mean = [alpha] + [beta] * (path_num - 1)
- res = []
- for mu in mean:
- # Rejection sample into [0.8, 1.0]
- while True:
- r = rng.normal(mu, variance)
- if 0.8 <= r <= 1.0:
- break
- res.append(float(r))
- sorted_res = sorted(res, reverse=True)
- if len(sorted_res) >= 2 and (sorted_res[0] - sorted_res[1]) > 0.02:
- return res
- def _fidelity_list_gap_random(path_num, gap, rng,
- alpha_base=0.95, variance=0.1):
- """
- Build a fidelity list of length `path_num` using:
- alpha = alpha_base
- beta = alpha - gap
- With random jitter via Normal(mu, variance), clamped to [0.8, 1.0].
- """
- alpha = float(alpha_base)
- beta = float(alpha_base - gap)
- # keep beta within [0.8, alpha)
- beta = min(max(beta, 0.8), max(alpha - 1e-6, 0.8))
- return _generate_fidelity_list_random_rng(rng, path_num, alpha=alpha, beta=beta, variance=variance)
- # -----------------------------
- # Cache helpers (gap sweep)
- # -----------------------------
- def _gap_sweep_signature(gap_list, scheduler_names, noise_model,
- node_path_list, importance_list, bounces, repeat,
- importance_mode="fixed", importance_uniform=(0.0, 1.0), seed=None,
- alpha_base=0.95, variance=0.10):
- payload = {
- "gap_list": list(map(float, gap_list)),
- "scheduler_names": list(scheduler_names),
- "noise_model": str(noise_model),
- "node_path_list": list(node_path_list),
- "importance_list": list(importance_list) if importance_list is not None else None,
- "importance_mode": str(importance_mode),
- "importance_uniform": list(importance_uniform) if importance_uniform is not None else None,
- "bounces": list(bounces),
- "repeat": int(repeat),
- "seed": int(seed) if seed is not None else None,
- # fidelity-generation mode & params
- "fidelity_mode": "random_gap_alpha_beta",
- "alpha_base": float(alpha_base),
- "variance": float(variance),
- "version": 2,
- }
- sig = hashlib.md5(json.dumps(payload, sort_keys=True).encode("utf-8")).hexdigest()[:10]
- return payload, sig
- def _shared_gap_path(noise_model, sig):
- root_dir = os.path.dirname(os.path.abspath(__file__))
- outdir = os.path.join(root_dir, "outputs")
- os.makedirs(outdir, exist_ok=True)
- return os.path.join(outdir, f"shared_gap_{noise_model}_{sig}.pickle")
- def _run_or_load_shared_gap_sweep(
- gap_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=(1, 2, 3, 4), repeat=10,
- importance_mode="fixed", importance_uniform=(0.0, 1.0),
- seed=None, alpha_base=0.95, variance=0.10,
- C_total=5000,
- verbose=True, print_every=1,
- ):
- """
- For each gap in gap_list, run `repeat` times over the same topology generator (per-repeat),
- and evaluate every scheduler. Cache the whole sweep with a single file lock.
- """
- config, sig = _gap_sweep_signature(
- gap_list, scheduler_names, noise_model,
- node_path_list, importance_list, bounces, repeat,
- importance_mode=importance_mode, importance_uniform=importance_uniform, seed=seed,
- alpha_base=alpha_base, variance=variance,
- )
- cache_path = _shared_gap_path(noise_model, sig)
- lock_path = cache_path + ".lock"
- STALE_LOCK_SECS = 6 * 60 * 60
- HEARTBEAT_EVERY = 5.0
- rng = np.random.default_rng(seed)
- # Fast path: cached
- if os.path.exists(cache_path):
- with open(cache_path, "rb") as f:
- return pickle.load(f)
- # Lock acquisition loop
- got_lock = False
- while True:
- try:
- fd = os.open(lock_path, os.O_CREAT | os.O_EXCL | os.O_WRONLY)
- os.close(fd)
- got_lock = True
- break
- except FileExistsError:
- # If cache appeared while waiting, load immediately.
- if os.path.exists(cache_path):
- with open(cache_path, "rb") as f:
- return pickle.load(f)
- try:
- age = time.time() - os.path.getmtime(lock_path)
- except OSError:
- age = 0
- if age > STALE_LOCK_SECS:
- try:
- os.remove(lock_path)
- except FileNotFoundError:
- pass
- continue
- time.sleep(1.0)
- try:
- if verbose:
- print(f"[gap-shared] Run gap sweep and cache to: {os.path.basename(cache_path)}", flush=True)
- data = {name: {k: [] for k in range(len(gap_list))} for name in scheduler_names}
- last_hb = time.time()
- # Repeat loop: per-repeat we will re-sample importance (if requested)
- for r in range(repeat):
- if verbose and ((r + 1) % print_every == 0 or r == 0):
- print(f"[gap-shared] Repeat {r+1}/{repeat}", flush=True)
- # Importance list per repeat
- if str(importance_mode).lower() == "uniform":
- a, b = map(float, importance_uniform)
- imp_list_r = [float(rng.uniform(a, b)) for _ in node_path_list]
- else:
- imp_list_r = list(importance_list)
- # Sweep over gaps
- for k, gap in enumerate(gap_list):
- if verbose:
- print(f"=== [GAP {noise_model}] gap={gap} ({k+1}/{len(gap_list)}) ===", flush=True)
- # Heartbeat
- now = time.time()
- if now - last_hb >= HEARTBEAT_EVERY:
- try:
- os.utime(lock_path, None)
- except FileNotFoundError:
- pass
- last_hb = now
- # Network generator for this 'gap' (fresh fidelities for each pair)
- def network_generator(path_num, pair_idx):
- fids = _fidelity_list_gap_random(
- path_num=path_num,
- gap=float(gap),
- rng=rng,
- alpha_base=alpha_base,
- variance=variance,
- )
- return QuantumNetwork(path_num, fids, noise_model)
- for name in scheduler_names:
- per_pair_results, total_cost, per_pair_details = run_scheduler(
- node_path_list=node_path_list, importance_list=imp_list_r,
- scheduler_name=name,
- bounces=list(bounces),
- C_total=int(C_total),
- network_generator=network_generator,
- return_details=True,
- )
- data[name][k].append({
- "per_pair_results": per_pair_results,
- "per_pair_details": per_pair_details,
- "total_cost": total_cost,
- "importance_list": imp_list_r,
- "gap": float(gap),
- "C_total": int(C_total),
- "alpha_base": float(alpha_base),
- "variance": float(variance),
- })
- payload = {
- "config": config,
- "gap_list": list(map(float, gap_list)),
- "data": data,
- }
- tmp = cache_path + ".tmp"
- with open(tmp, "wb") as f:
- pickle.dump(payload, f, protocol=pickle.HIGHEST_PROTOCOL)
- os.replace(tmp, cache_path)
- return payload
- finally:
- if got_lock:
- try:
- os.remove(lock_path)
- except FileNotFoundError:
- pass
- # -----------------------------
- # Public API: plot (mean ± 95% CI)
- # -----------------------------
- def plot_accuracy_vs_gap(
- gap_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=(1, 2, 3, 4), repeat=10,
- importance_mode="fixed", importance_uniform=(0.0, 1.0),
- seed=None,
- alpha_base=0.95, variance=0.10,
- C_total_override=None,
- verbose=True, print_every=1,
- ):
- """
- Make a plot with x = gap, y = accuracy (mean ± 95% CI).
- Uses alpha - beta = gap; fidelities are sampled per pair from Normal(mu, variance) clamped to [0.8,1.0].
- """
- file_name = f"plot_accuracy_vs_gap_{noise_model}"
- root_dir = os.path.dirname(os.path.abspath(__file__))
- outdir = os.path.join(root_dir, "outputs")
- os.makedirs(outdir, exist_ok=True)
- C_total = int(C_total_override) if C_total_override is not None else 5000
- payload = _run_or_load_shared_gap_sweep(
- gap_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=bounces, repeat=repeat,
- importance_mode=importance_mode, importance_uniform=importance_uniform, seed=seed,
- alpha_base=alpha_base, variance=variance,
- C_total=C_total,
- verbose=verbose, print_every=print_every,
- )
- # Collect accuracy arrays per gap
- results = {name: {"accs": [[] for _ in gap_list]} for name in scheduler_names}
- for name in scheduler_names:
- for k in range(len(gap_list)):
- for run in payload["data"][name][k]:
- per_pair_results = run["per_pair_results"]
- vals = []
- for r in per_pair_results:
- if isinstance(r, tuple):
- c = r[0]
- elif isinstance(r, (int, float, bool)):
- c = bool(r)
- else:
- raise TypeError(f"per_pair_results element has unexpected type: {type(r)} -> {r}")
- vals.append(1.0 if c else 0.0)
- acc = float(np.mean(vals)) if vals else 0.0
- results[name]["accs"][k].append(acc)
- # Plot
- plt.rc("axes", prop_cycle=default_cycler)
- fig, ax = plt.subplots(figsize=(8, 5), constrained_layout=True)
- xs = list(map(float, gap_list))
- for name, data in results.items():
- means, halfs = [], []
- for vals in data["accs"]:
- m, h = mean_ci95(vals)
- means.append(m); halfs.append(h)
- means = np.asarray(means); halfs = np.asarray(halfs)
- label = name.replace("Vanilla NB","VanillaNB").replace("Succ. Elim. NB","SuccElimNB")
- ax.plot(xs, means, linewidth=2.0, label=label)
- ax.fill_between(xs, means - halfs, means + halfs, alpha=0.25)
- ax.set_xlabel("Gap (alpha - beta)")
- ax.set_ylabel("Average Correctness (mean ± 95% CI)")
- ax.grid(True); ax.legend(title="Scheduler", fontsize=14, title_fontsize=18)
- pdf = os.path.join(outdir, f"{file_name}.pdf")
- plt.savefig(pdf)
- if shutil.which("pdfcrop"):
- os.system(f'pdfcrop --margins "8 8 8 8" "{pdf}" "{pdf}"')
- print(f"Saved: {pdf}", flush=True)
- return pdf
- if __name__ == "__main__":
- # Minimal example (safe defaults). Adjust as needed.
- gaps = [0.005, 0.01, 0.02, 0.03]
- scheds = ["Vanilla NB", "Succ. Elim. NB", "Greedy Two-Phase"]
- noise = "Depolar"
- node_paths = [5, 5, 5] # 3 pairs, each with 5 candidate links
- importances = [1.0, 1.0, 1.0]
- plot_accuracy_vs_gap(
- gap_list=gaps,
- scheduler_names=scheds,
- noise_model=noise,
- node_path_list=node_paths,
- importance_list=importances,
- bounces=(1,2,3,4),
- repeat=5,
- importance_mode="fixed",
- seed=42,
- alpha_base=0.95,
- variance=0.10,
- C_total_override=5000,
- )
|