| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 |
- # evaluation.py — Run shared sweep once; all plots aggregate from cache (reproducible with seed)
- import math
- import os
- import pickle
- import time
- import shutil
- import json
- import hashlib
- import matplotlib.pyplot as plt
- import numpy as np
- from cycler import cycler
- # metrics / viz を外出し(UNIX的分離)
- from metrics.widths import (
- ci_radius_hoeffding,
- sum_weighted_widths_all_links,
- sum_weighted_min_widths_perpair,
- sum_widths_all_links,
- sum_minwidths_perpair,
- )
- from viz.plots import mean_ci95, plot_with_ci_band
- from network import QuantumNetwork
- from schedulers import run_scheduler # スケジューラ呼び出し
- from utils.ids import to_idx0, normalize_to_1origin, is_keys_1origin
- from utils.fidelity import (
- generate_fidelity_list_avg_gap,
- generate_fidelity_list_fix_gap,
- generate_fidelity_list_random,
- _generate_fidelity_list_random_rng,
- )
- import matplotlib as mpl
- mpl.rcParams["figure.constrained_layout.use"] = True
- mpl.rcParams["savefig.bbox"] = "tight" # すべての savefig に適用
- # ---- Matplotlib style(互換性重視: hex色 & 無難な記号類)----
- mpl.rcParams["font.family"] = "serif"
- mpl.rcParams["font.serif"] = [
- "TeX Gyre Termes",
- "Nimbus Roman",
- "Liberation Serif",
- "DejaVu Serif",
- ]
- mpl.rcParams["font.size"] = 20
- default_cycler = (
- cycler(color=["#4daf4a", "#377eb8", "#e41a1c", "#984ea3", "#ff7f00", "#a65628"])
- + cycler(marker=["s", "v", "o", "x", "*", "+"])
- + cycler(linestyle=[":", "--", "-", "-.", "--", ":"])
- )
- plt.rc("axes", prop_cycle=default_cycler)
- # =========================
- # Progress helpers
- # =========================
- def _start_timer():
- return {"t0": time.time(), "last": time.time()}
- def _tick(timer):
- now = time.time()
- dt_total = now - timer["t0"]
- dt_step = now - timer["last"]
- timer["last"] = now
- return dt_total, dt_step
- def _log(msg):
- print(msg, flush=True)
- # =========================
- # Shared sweep (cache) helpers with file lock
- # =========================
- def _sweep_signature(budget_list, scheduler_names, noise_model,
- node_path_list, importance_list, bounces, repeat,
- importance_mode="fixed", importance_uniform=(0.0, 1.0), seed=None):
- payload = {
- "budget_list": list(budget_list),
- "scheduler_names": list(scheduler_names),
- "noise_model": str(noise_model),
- "node_path_list": list(node_path_list),
- "importance_list": list(importance_list) if importance_list is not None else None,
- "importance_mode": str(importance_mode),
- "importance_uniform": list(importance_uniform) if importance_uniform is not None else None,
- "bounces": list(bounces),
- "repeat": int(repeat),
- "seed": int(seed) if seed is not None else None,
- "version": 5, # schema: true_fid_by_path を 1-origin に統一
- }
- sig = hashlib.md5(json.dumps(payload, sort_keys=True).encode("utf-8")).hexdigest()[:10]
- return payload, sig
- def _shared_sweep_path(noise_model, sig):
- root_dir = os.path.dirname(os.path.abspath(__file__))
- outdir = os.path.join(root_dir, "outputs")
- os.makedirs(outdir, exist_ok=True)
- return os.path.join(outdir, f"shared_sweep_{noise_model}_{sig}.pickle")
- def _run_or_load_shared_sweep(
- budget_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=(1,2,3,4), repeat=10,
- importance_mode="fixed", importance_uniform=(0.0, 1.0),
- seed=None,
- verbose=True, print_every=1,
- ):
- config, sig = _sweep_signature(
- budget_list, scheduler_names, noise_model,
- node_path_list, importance_list, bounces, repeat,
- importance_mode=importance_mode, importance_uniform=importance_uniform, seed=seed
- )
- cache_path = _shared_sweep_path(noise_model, sig)
- lock_path = cache_path + ".lock"
- STALE_LOCK_SECS = 6 * 60 * 60 # 6時間無更新ならロック回収
- HEARTBEAT_EVERY = 5.0 # 生成側のロック更新間隔(秒)
- rng = np.random.default_rng(seed) # 乱数生成器(再現性の核)
- # 既存キャッシュがあれば即ロード
- if os.path.exists(cache_path):
- if verbose: _log(f"[shared] Load cached sweep: {os.path.basename(cache_path)}")
- with open(cache_path, "rb") as f:
- return pickle.load(f)
- # --- ロック獲得(初回生成は1プロセスのみ)---
- got_lock = False
- while True:
- try:
- fd = os.open(lock_path, os.O_CREAT | os.O_EXCL | os.O_WRONLY)
- os.close(fd)
- got_lock = True
- break
- except FileExistsError:
- # 他プロセスが生成中:完成を待つ(タイムアウトなし)
- if os.path.exists(cache_path):
- with open(cache_path, "rb") as f:
- return pickle.load(f)
- # スタックロック検出:長時間 mtime 更新がない場合は回収
- try:
- age = time.time() - os.path.getmtime(lock_path)
- except OSError:
- age = 0
- if age > STALE_LOCK_SECS:
- if verbose: _log("[shared] Stale lock detected. Removing...")
- try: os.remove(lock_path)
- except FileNotFoundError:
- pass
- continue
- # 進捗待ち
- if verbose: _log("[shared] Waiting for cache to be ready...")
- time.sleep(1.0)
- try:
- if verbose: _log(f"[shared] Run sweep and cache to: {os.path.basename(cache_path)}")
- data = {name: {k: [] for k in range(len(budget_list))} for name in scheduler_names}
- last_hb = time.time()
- # === 1リピート=1トポロジを固定し、そのまま全ての budget を評価 ===
- for r in range(repeat):
- if verbose and ((r + 1) % print_every == 0 or r == 0):
- _log(f"[shared] Repeat {r+1}/{repeat} (fixed topology)")
- # この repeat 内で使い回す固定トポロジ(rng版)
- fidelity_bank = [_generate_fidelity_list_random_rng(rng, n) for n in node_path_list]
- # importance per repeat (fixed or uniform sample; rng使用)
- if str(importance_mode).lower() == "uniform":
- a, b = map(float, importance_uniform)
- imp_list_r = [float(rng.uniform(a, b)) for _ in node_path_list]
- else:
- imp_list_r = list(importance_list)
- def network_generator(path_num, pair_idx):
- return QuantumNetwork(path_num, fidelity_bank[pair_idx], noise_model)
- # 同一トポロジのまま、予算だけを変えて実行
- for k, C_total in enumerate(budget_list):
- if verbose:
- _log(f"=== [SHARED {noise_model}] Budget={C_total} ({k+1}/{len(budget_list)}) ===")
- # ハートビート(ロックの mtime を更新)
- now = time.time()
- if now - last_hb >= HEARTBEAT_EVERY:
- try:
- os.utime(lock_path, None)
- except FileNotFoundError:
- pass
- last_hb = now
- for name in scheduler_names:
- per_pair_results, total_cost, per_pair_details = run_scheduler(
- node_path_list=node_path_list, importance_list=imp_list_r,
- scheduler_name=name,
- bounces=list(bounces),
- C_total=int(C_total),
- network_generator=network_generator,
- return_details=True,
- )
- # --- 真の忠実度 true_fid_by_path を per_pair_details に注入 ---
- # キーは est_fid_by_path のキー体系(整数1..Lに正規化)に合わせる。無ければ 1..L。
- for d, det in enumerate(per_pair_details):
- true_list = fidelity_bank[d] # 0-origin list of true fidelities
- est_map = det.get("est_fid_by_path", {}) # 本来 {1..L} を想定
- L = len(true_list)
- # 1) 推定辞書を 1-origin に正規化(0-originで来た場合でも吸収)
- if est_map:
- est_map_norm = normalize_to_1origin(
- {int(k): float(v) for k, v in est_map.items()}, L
- )
- else:
- est_map_norm = {} # 未測定なら空のまま(値計算側で0寄与にする)
- # 2) 真値辞書を 1-origin で構築(内部 true_list は 0-origin なので to_idx0)
- true_map = {pid: float(true_list[to_idx0(pid)]) for pid in range(1, L + 1)}
- # 3) 厳格検査(任意だが、デバッグの早期検出に有用)
- if est_map_norm and not is_keys_1origin(est_map_norm.keys(), L):
- raise RuntimeError(f"[inject] est_fid_by_path keys not 1..{L} (pair={d})")
- det["est_fid_by_path"] = est_map_norm
- det["true_fid_by_path"] = true_map
- data[name][k].append({
- "per_pair_results": per_pair_results,
- "per_pair_details": per_pair_details,
- "total_cost": total_cost,
- "importance_list": imp_list_r
- })
- payload = {"config": config, "budget_list": list(budget_list), "data": data}
- # アトミック書き込み
- tmp = cache_path + ".tmp"
- with open(tmp, "wb") as f:
- pickle.dump(payload, f, protocol=pickle.HIGHEST_PROTOCOL)
- os.replace(tmp, cache_path)
- return payload
- finally:
- if got_lock:
- try:
- os.remove(lock_path)
- except FileNotFoundError:
- pass
- # =========================
- # 1) Accuracy: 平均 ± 95%CI
- # =========================
- def plot_accuracy_vs_budget(
- budget_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=(1,2,3,4), repeat=10,
- importance_mode="fixed", importance_uniform=(0.0,1.0), seed=None,
- verbose=True, print_every=1,
- ):
- file_name = f"plot_accuracy_vs_budget_{noise_model}"
- root_dir = os.path.dirname(os.path.abspath(__file__))
- outdir = os.path.join(root_dir, "outputs")
- os.makedirs(outdir, exist_ok=True)
- payload = _run_or_load_shared_sweep(
- budget_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=bounces, repeat=repeat,
- importance_mode=importance_mode, importance_uniform=importance_uniform, seed=seed,
- verbose=verbose, print_every=print_every,
- )
- # 収集: 予算ごとの正解率(0/1)の配列を溜める
- results = {name: {"accs": [[] for _ in budget_list]} for name in scheduler_names}
- for name in scheduler_names:
- for k in range(len(budget_list)):
- for run in payload["data"][name][k]:
- per_pair_results = run["per_pair_results"]
- # per_pair_results の要素を bool に正規化して 0/1 に変換
- vals = []
- for r in per_pair_results:
- if isinstance(r, tuple):
- c = r[0]
- elif isinstance(r, (int, float, bool)):
- c = bool(r)
- else:
- raise TypeError(
- f"per_pair_results element has unexpected type: {type(r)} -> {r}"
- )
- vals.append(1.0 if c else 0.0)
- acc = float(np.mean(vals)) if vals else 0.0
- results[name]["accs"][k].append(acc)
- # plot (mean ± 95%CI)
- plt.rc("axes", prop_cycle=default_cycler)
- fig, ax = plt.subplots(figsize=(8, 5), constrained_layout=True)
- xs = list(budget_list)
- for name, data in results.items():
- means, halfs = [], []
- for vals in data["accs"]:
- m, h = mean_ci95(vals) # viz.plots.mean_ci95 を使用
- means.append(m); halfs.append(h)
- means = np.asarray(means); halfs = np.asarray(halfs)
- label = name.replace("Vanilla NB","VanillaNB").replace("Succ. Elim. NB","SuccElimNB")
- ax.plot(xs, means, linewidth=2.0, label=label)
- ax.fill_between(xs, means - halfs, means + halfs, alpha=0.25)
- ax.set_xlabel("Total Budget (C)")
- ax.set_ylabel("Average Correctness (mean ± 95% CI)")
- ax.grid(True); ax.legend(title="Scheduler", fontsize=14, title_fontsize=18)
- pdf = os.path.join(outdir, f"{file_name}.pdf")
- plt.savefig(pdf)
- if shutil.which("pdfcrop"):
- os.system(f'pdfcrop --margins "8 8 8 8" {pdf} {pdf}')
- _log(f"Saved: {pdf}")
- # =========================
- # 2) Value vs Used(x=実コスト平均, y=Σ_d I_d * true_fid(j*_d) の平均±95%CI)
- # ※ j*_d は宛先 d における「推定忠実度が最大」のリンク(path_id は 1..L)
- # =========================
- def plot_value_vs_used(
- budget_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=(1,2,3,4), repeat=10, importance_mode="fixed", importance_uniform=(0.0,1.0), seed=None,
- verbose=True, print_every=1,
- ):
- file_name = f"plot_value_vs_used_{noise_model}"
- root_dir = os.path.dirname(os.path.abspath(__file__))
- outdir = os.path.join(root_dir, "outputs")
- os.makedirs(outdir, exist_ok=True)
- payload = _run_or_load_shared_sweep(
- budget_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=bounces, repeat=repeat,
- importance_mode=importance_mode, importance_uniform=importance_uniform, seed=seed,
- verbose=verbose, print_every=print_every,
- )
- results = {name: {"values": [[] for _ in budget_list], "costs": [[] for _ in budget_list]} for name in scheduler_names}
- for name in scheduler_names:
- for k in range(len(budget_list)):
- for run in payload["data"][name][k]:
- per_pair_details = run["per_pair_details"]
- total_cost = int(run["total_cost"])
- # y: value = Σ_d I_d * true_fid(j*_d)
- # where j*_d = argmax_l est_fid_by_path[d][l]
- value = 0.0
- I_used = run.get("importance_list", importance_list)
- for d, det in enumerate(per_pair_details):
- est = det.get("est_fid_by_path", {}) # {path_id(1..L): estimated_fidelity}
- true_ = det.get("true_fid_by_path", {}) # {path_id(1..L): true_fidelity}
- # 1) 真値辞書が無いのは設定不整合 → 例外で明示
- if not true_:
- raise RuntimeError(f"[value] true_fid_by_path missing for pair {d}")
- # 2') 1本でも推定があれば、その時点の推定最大 j* を選び、その『真の忠実度』を使う
- if est:
- j_star = max(est, key=lambda l: float(est.get(l, 0.0)))
- if j_star not in true_:
- raise RuntimeError(
- f"[value] true_fid_by_path lacks j* (pair={d}, j*={j_star})."
- )
- best_true = float(true_[j_star])
- else:
- # 推定が全く無ければ 0 寄与(従来どおり)
- best_true = 0.0
- I = float(I_used[d]) if d < len(I_used) else 1.0
- value += I * best_true
- results[name]["values"][k].append(float(value))
- results[name]["costs"][k].append(total_cost)
- # plot (y に 95%CI の帯を表示)
- plt.rc("axes", prop_cycle=default_cycler)
- fig, ax = plt.subplots(figsize=(8, 5), constrained_layout=True)
- for name, dat in results.items():
- # x は各予算での使用コストの平均
- x_means = [float(np.mean(v)) if v else 0.0 for v in dat["costs"]]
- # y は各予算での value(上で定義)の平均 ± 95%CI
- y_means, y_halfs = [], []
- for vals in dat["values"]:
- m, h = mean_ci95(vals) # viz.plots.mean_ci95
- y_means.append(float(m))
- y_halfs.append(float(h))
- x_means = np.asarray(x_means)
- y_means = np.asarray(y_means)
- y_halfs = np.asarray(y_halfs)
- label = name.replace("Vanilla NB", "VanillaNB").replace("Succ. Elim. NB", "SuccElimNB")
- ax.plot(x_means, y_means, linewidth=2.0, marker="o", label=label)
- ax.fill_between(x_means, y_means - y_halfs, y_means + y_halfs, alpha=0.25)
- ax.set_xlabel("Total Measured Cost (used)")
- ax.set_ylabel("Σ_d I_d · true_fid(j*_d) (mean ± 95% CI)")
- ax.grid(True); ax.legend(title="Scheduler")
- pdf = os.path.join(outdir, f"{file_name}.pdf")
- plt.savefig(pdf)
- if shutil.which("pdfcrop"):
- os.system(f'pdfcrop --margins "8 8 8 8" {pdf} {pdf}')
- _log(f"Saved: {pdf}")
- def plot_value_vs_budget(
- budget_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=(1,2,3,4), repeat=10, importance_mode="fixed", importance_uniform=(0.0,1.0), seed=None,
- verbose=True, print_every=1,
- ):
- """
- x=割り当て予算(budget_list)、y=Σ_d I_d * true_fid(j*_d) の平均±95%CI を描画する。
- ※ j*_d は「その時点の推定最大リンク」。全リンク未測定でも、推定が1本でもあればその j* を使う。
- 出力: outputs/plot_value_vs_budget_{noise_model}.pdf
- """
- file_name = f"plot_value_vs_budget_{noise_model}"
- root_dir = os.path.dirname(os.path.abspath(__file__))
- outdir = os.path.join(root_dir, "outputs")
- os.makedirs(outdir, exist_ok=True)
- # 共有スイープ(キャッシュ)を実行/読込
- payload = _run_or_load_shared_sweep(
- budget_list, scheduler_names, noise_model,
- node_path_list, importance_list,
- bounces=bounces, repeat=repeat,
- importance_mode=importance_mode, importance_uniform=importance_uniform, seed=seed,
- verbose=verbose, print_every=print_every,
- )
- # スケジューラごと・予算ごとに value と(参考)used コストを蓄積
- results = {name: {"values": [[] for _ in budget_list], "costs": [[] for _ in budget_list]} for name in scheduler_names}
- for name in scheduler_names:
- for k in range(len(budget_list)):
- for run in payload["data"][name][k]:
- per_pair_details = run["per_pair_details"]
- total_cost = int(run["total_cost"]) # 参考(今回はxに使わない)
- I_used = run.get("importance_list", importance_list)
- # y: value = Σ_d I_d * true_fid(j*_d)
- # j*_d = argmax_l est_fid_by_path[d][l](1本でも推定があればその時点のj*を採用)
- value = 0.0
- for d, det in enumerate(per_pair_details):
- est = det.get("est_fid_by_path", {}) # {path_id(1..L): est}
- true_ = det.get("true_fid_by_path", {}) # {path_id(1..L): true}
- # 真値辞書が無いのは設定不整合
- if not true_:
- raise RuntimeError(f"[value] true_fid_by_path missing for pair {d}")
- # 推定が1本でもあれば、その時点の j* の『真の忠実度』を使う
- if est:
- j_star = max(est, key=lambda l: float(est.get(l, 0.0)))
- if j_star not in true_:
- raise RuntimeError(f"[value] true_fid_by_path lacks j* (pair={d}, j*={j_star}).")
- best_true = float(true_[j_star])
- else:
- # 推定が全く無ければ寄与0
- best_true = 0.0
- I = float(I_used[d]) if d < len(I_used) else 1.0
- value += I * best_true
- results[name]["values"][k].append(float(value))
- results[name]["costs"][k].append(total_cost) # y軸には使わないが保持
- # === プロット(x: 割り当て予算 = budget_list, y: value 平均±95%CI) ===
- plt.rc("axes", prop_cycle=default_cycler)
- fig, ax = plt.subplots(figsize=(8, 5), constrained_layout=True)
- x_vals = np.asarray(list(budget_list), dtype=float) # 横軸は割り当て予算
- for name, dat in results.items():
- # y は各予算での value の平均 ± 95%CI
- y_means, y_halfs = [], []
- for vals in dat["values"]:
- m, h = mean_ci95(vals)
- y_means.append(float(m))
- y_halfs.append(float(h))
- y_means = np.asarray(y_means)
- y_halfs = np.asarray(y_halfs)
- label = name.replace("Vanilla NB", "VanillaNB").replace("Succ. Elim. NB", "SuccElimNB")
- ax.plot(x_vals, y_means, linewidth=2.0, marker="o", label=label)
- ax.fill_between(x_vals, y_means - y_halfs, y_means + y_halfs, alpha=0.25)
- ax.set_xlabel("Total Budget (C)")
- ax.set_ylabel("Σ_d I_d · true_fid(j*_d) (mean ± 95% CI)")
- ax.grid(True); ax.legend(title="Scheduler")
- pdf = os.path.join(outdir, f"{file_name}.pdf")
- plt.savefig(pdf)
- if shutil.which("pdfcrop"):
- os.system(f'pdfcrop --margins "8 8 8 8" {pdf} {pdf}')
- _log(f"Saved: {pdf}")
|