paper.bbl 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. \begin{thebibliography}{10}
  2. \bibitem{Liu24:INFOCOM}
  3. M.~Liu, Z.~Li, X.~Wang, and J.~C. Lui, ``{LinkSelFiE: Link Selection and
  4. Fidelity Estimation in Quantum Networks},'' in {\em Proceedings of the 43rd
  5. IEEE Conference on Computer Communications (INFOCOM 2024)}, pp.~1421--1430,
  6. May 2024.
  7. \bibitem{Knill2008_RB}
  8. E.~Knill, D.~Leibfried, R.~Reichle, J.~Britton, R.~B. Blakestad, J.~D. Jost,
  9. C.~Langer, R.~Ozeri, S.~Seidelin, and D.~J. Wineland, ``Randomized
  10. benchmarking of quantum gates,'' {\em Physical Review A}, vol.~77, no.~1,
  11. p.~012307, 2008.
  12. \bibitem{Helsen2017_MultiqubitRB}
  13. J.~Helsen, F.~Battistel, and B.~M. Terhal, ``Multiqubit randomized benchmarking
  14. using few samples,'' {\em Physical Review A}, vol.~100, no.~3, p.~032304,
  15. 2019.
  16. \bibitem{Epstein2014_LimitsRB}
  17. J.~M. Epstein, A.~W. Cross, E.~Magesan, and J.~M. Gambetta, ``Investigating the
  18. limits of randomized benchmarking protocols,'' {\em Physical Review A},
  19. vol.~89, no.~6, p.~062321, 2014.
  20. \bibitem{Helsen2023_NB}
  21. J.~Helsen and S.~Wehner, ``A benchmarking procedure for quantum networks,''
  22. {\em npj Quantum Information}, vol.~9, no.~1, p.~17, 2023.
  23. \bibitem{Liu2024_QBGP}
  24. M.~Liu, Z.~Li, K.~Cai, J.~Allcock, S.~Zhang, and J.~C. Lui, ``Quantum bgp with
  25. online path selection via network benchmarking,'' in {\em IEEE Conference on
  26. Computer Communications (INFOCOM)}, pp.~1401--1410, IEEE, 2024.
  27. \bibitem{Wang2025_LearningBestPaths}
  28. X.~Wang, M.~Liu, X.~Liu, Z.~Li, M.~Hajiesmaili, J.~C. Lui, and D.~Towsley,
  29. ``Learning best paths in quantum networks,'' in {\em IEEE Conference on
  30. Computer Communications (INFOCOM)}, IEEE, 2025.
  31. \bibitem{Bubeck2012_RegretAnalysis}
  32. S.~Bubeck and N.~Cesa-Bianchi, ``Regret analysis of stochastic and
  33. nonstochastic multi-armed bandit problems,'' {\em Foundations and Trends® in
  34. Machine Learning}, vol.~5, no.~1, pp.~1--122, 2012.
  35. \bibitem{Audibert10:COLT}
  36. J.-Y. Audibert and S.~Bubeck, ``{Best Arm Identification in Multi-Armed
  37. Bandits},'' in {\em Proceedings of the 23rd Annual Conference on Learning
  38. Theory (COLT)}, (Haifa, Israel), June 2010.
  39. \bibitem{Jamieson2014_BAI}
  40. K.~Jamieson and R.~Nowak, ``Best-arm identification algorithms for multi-armed
  41. bandits in the fixed confidence setting,'' in {\em 2014 48th Annual
  42. Conference on Information Sciences and Systems (CISS)}, pp.~1--6, IEEE, 2014.
  43. \bibitem{Coopmans2021_NetSquid}
  44. T.~Coopmans, R.~Knegjens, A.~Dahlberg, D.~Maier, L.~Nijsten, J.~Oliveira,
  45. M.~Papendrecht, J.~Rabbie, F.~Rozp{\k e}dek, M.~Skrzypczyk, {\em et~al.},
  46. ``Netsquid, a network simulator for quantum information using discrete
  47. events,'' {\em Communications Physics}, vol.~4, no.~1, p.~164, 2021.
  48. \end{thebibliography}